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Equations of Motion for Double Pendulum

We consider the double pendulum, which consists of the arm 1
and the arm 2 (See Figure). The lengths of each arm are ℓ1 and
ℓ2, and the masses are m1 and m2. Suppose that the centers of
mass (COM) of each arm are at the centers of the each arm, and
the inertia moments of each arm are L1 and L2, respectively.

The configuration of the double pendulum is specified by the an-
gles between each arm and the negative direction of the y axis, θ1
and θ2.

Using the formalism of analytical mechanics, we will derive the
equations of motion for the system as a set of ordinary differential
equaions of the first order with 4 variables, i.e. the angles (θ1, θ2)
and their canonical conjugate momenta (p1, p2).

First, we derive the Lagrangian L. Suppose that the co-ordinates of COM of each arm
be (x1, y1) and (x2, y2), then they can be expressed in terms of the angles (θ1, θ2) as

x1 =
1

2
ℓ1 sin θ1,

y1 = −1

2
ℓ1 cos θ1,


x2 = ℓ1 sin θ1 +

1

2
ℓ2 sin θ2,

y2 = −ℓ1 cos θ1 −
1

2
ℓ2 cos θ2.

By taking the time derivatives of these equations, the velocities of each arms (ẋ1, ẏ1) and
(ẋ2, ẏ2) are given by

ẋ1 =
1

2
ℓ1 cos θ1θ̇1,

ẏ1 =
1

2
ℓ1 sin θ1θ̇1,


ẋ2 = ℓ1 cos θ1θ̇1 +

1

2
ℓ2 cos θ2θ̇2,

ẏ2 = ℓ1 sin θ1θ̇1 +
1

2
ℓ2 sin θ2θ̇2 .

The kinetic energy T may be expressed as the sum of the translational energy of COM
and the rotational energy around COM, thus is given by

T =
1

2
m1v

2
1 +

1

2
L1θ̇

2
1 +

1

2
m2v

2
2 +

1

2
L2θ̇

2
2

=
1

2

(
θ̇1, θ̇2

) m1

(
1

2
ℓ1

)2

+ L1 +m2ℓ
2
1,

1

2
m2ℓ1ℓ2 cos

(
θ1 − θ2

)
1

2
m2ℓ1ℓ2 cos

(
θ1 − θ2

)
, m2

(
1

2
ℓ2

)2

+ L2

(
θ̇1
θ̇2

)
≡ 1

2
θ̇tÂθ̇

as a quadratic form of θ̇ ≡ (θ̇1, θ̇2), using the symmetric matrix Â.

The potential energy U is given by

U = −m1g
1

2
ℓ1 cos θ1 −m2g

(
ℓ1 cos θ1 +

1

2
ℓ2 cos θ2

)
,

1



thus we have Lagrangian L for this system

L(θ, θ̇) = T (θ, θ̇)− U(θ)

as a function of θ and θ̇.

The momentum p ≡ (p1, p2) canonical conjugate to θ is defined as

p ≡ ∂L(θ, θ̇)

∂θ̇
= Âθ̇, (1)

thus the Lagrange equation of motion is given as

ṗ =
∂L(θ, θ̇)

∂θ
, (2)

or 
ṗ1 =

∂L

∂θ1
= −1

2
m2ℓ1ℓ2 sin(θ1 − θ2)θ̇1θ̇2 −m1g

1

2
ℓ1 sin θ1 −m2gℓ1 sin θ1 ,

ṗ2 =
∂L

∂θ2
= +

1

2
m2ℓ1ℓ2 sin(θ1 − θ2)θ̇1θ̇2 −m2g

1

2
ℓ2 sin θ2 .

The equations of motion for the system are given by Eqs. (1) and (2), which are the
second order differential equations of θ. In the numerics, it is more convenient in the form

θ̇ = Â−1p, ṗ =
∂L(θ, θ̇)

∂θ

∣∣∣
θ̇=Â−1p

(3)

as first order differential equations of the four variables θ and p, which we solve numer-
ically using the Runge-Kutta method of the fourth order. Note that Â−1 is the inverse
matrix of Â, namely

Â−1 =
1

det

(
b, −c
−c, a

)
for symmetric matrix Â =

(
a, c
c, b

)
, det ≡ ab− c2 .

Note that this set of equations (3) is exactly the same as Hamilton canonical equation

θ̇ =
∂H(θ,p)

∂p
, ṗ = −∂H(θ,p)

∂θ
; H(θ,p) ≡ 1

2
ptÂ−1p+ U(θ) .
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